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Hadron thermodynamics deals with a gas of indistinguishable particles whose 
mass spectrum is taken to have the form Krnae b''. A long-standing inconsistency 
is pointed out, namely the nonextensive nature of the entropy found in some 
treatments by way of the microcanonical ensemble, which contrasts with the 
extensive nature found by way of the canonical ensemble. The former result is 
due to an error. After correction, the two ensembles are found to lead to the 
same expressions for the thermodynamic quantities if a ~> -7/2. Some of these 
expressions are new. For a< -5/2, the microcanonical approach is used to 
examine a model in which one particle is appreciably heavier than the rest. 
However, the resulting entropy is found to be unphysicai. 
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1. I N T R O D U C T I O N  

In  hadron  thermodynamics ,  the density of hadron  masses is given by 

p ( m )  = K i n %  bm (1.1) 

where K, a, and  b are constants.  Ill We are interested in whether or no t  the 
resulting ent ropy is extensive (i.e., scales with the size of the system). M a n y  

systems in thermodynamics  are entensive in that  sense. Those with long- 
range interact ions are not,  the black hole case being a significant example. 
However,  even such systems retain the proper ty  of superaddit ivi ty for their 

entropies. For  example, consider two adiabatical ly isolated systems A and  
B which can be brought  into thermal  contact  by the withdrawal  of a par- 
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tition. Since this is an adiabatic process, the entropy cannot decrease as a 
result of this procedure, so that 

SAs>~ SA + SB (1.2) 

It can be seen that (1.2) encapsulates the essence of the second law even for 
nonextensive systems, ~2) there being no need to appeal to other principles 
[such as the subadditivity of the energy E ( S  A -t- SB) ~ E(SA) -Jff E(SB) ~, One 
would expect that a change in the value of a in (1.1) would not alter as 
basic a property as extensivity or supperadditivity. This view leads one to 
track down some discrepancies in hadron thermodynamics, whose age in 
no way detracts from their intrinsic interest. Unless they are cleared up, the 
whole theory is in doubt once the discrepancies have been pointed out. The 
aim of this paper is to save the theory thus threatened by removing the dis- 
crepancies, which are listed in Table I, where a denotes the phase space 
density for a system of particles described by a level density (1.1). This 
applies to an approach via the microcanonical ensemble. 

The original approach via the canonical ensemble ~1) showed no dis- 
crepancies and the entropy was found to be extensive, as confirmed in 
Ref. 4 and in the present paper. 

We now explain the origin of the discrepancies. They are purely 
mathematical and are due to the unnecessary introduction of the quantity 
~n/(E) in Eq. (3.14) of Ref. 4, subsequent estimates of which are really 
those for the n-particle contribution a (n~ to the phase space density. We 
show here that once ~r (~) is estimated correctly, the extensive nature of the 
entropy emerges for the microcanonical treatment also. As might be expec- 

Table I. Properties of the Entropy of a H a d r o n  Gas Derived via t h e  

Microcanonical Approach for Various Values of the Parameter a 

Natu re  of the en t ropy  as given in the 

or ig ina l  paper  orinferred by us from 

Value of a S = k In a Ref. 

a > - 5 / 2  Extensive  3 
Nonextens ive  4 

a - 5 / 2  Nonextens ive  3, 4 
- 7/2 < a < - 5 / 2  Nonextens ive  4 

a = - 7 / 2  Nonextens ive  4 
a <  5/2 a Nonextens ive  but  superaddi t ive  3 

Nonextens ive  but  not  superaddi t ive  4 

a Special case when one part icle  is s ingled out  to be apprec iab ly  heavier  t han  the rest. 
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ted, we find new corrected expressions for the thermodynamic quantities as 
part of the recalculation given in Section 3 and this applies to the first four 
of the five cases treated there. This section contains the main part of this 
paper. 

This still leaves the question of the grand canonical treatment. Since 
particle creation is essential, only the case of zero chemical potential need 
be considered. Hence, one can show [Eq. (2.2)] that in the thermodynamic 
limit the canonical partition function and the grand canonical partition 
function are the same. This makes consistency between these two ensembles 
automatic for our case. The rest of Section 2 contains the derivation of the 
other results for the canonical/grand canonical ensemble. 

Thus, the present paper converts a theory flawed by an inconsistency 
into a tenable one. In particular, there are no negative heat capacities. It is 
their suggested existence (4~ that first gave rise to this investigation. They 
occur only for systems with nonextensive entropies. (2) We have shifted the 
main emphasis of the analysis from the phase space densities to entropies. 
The latter are considered in Ref. 4 only in Eq. (4.12). 

In conclusion, we note two additional points: 

1. A special case for a < - 5 / 2  when one particle is singled out to be 
appreciably heavier than the rest is also discussed. (3'4) In both cases the 
resulting entropy expression is nonextensive. However, while one is found 
to be superadditive, thus making it physically acceptable, (3) the other is not 
superadditive (4) and so must be unphysical. It is shown here in case (v) of 
Section 3 that using the corrected calculation of the phase space density 
still results in an entropy that is nonextensive and not superadditive. 
Therefore, the model considered is unphysical. 

2. In agreement with earlier work (see, for example, Ref. 5), the par- 
tition function converges at T =  T o only if a <  -5 /2 .  The energy of the 
system converges at T =  To only if a < -7/2 .  Hence, for a ~> -7 /2 ,  the tem- 
perature To is attained only in the limit of infinite energy and so constitutes 
an ultimate temperature for the system. 

The relationship between descriptions of the same system by different 
ensembles, which is our main concern here, arises in a very similar form in 
the theory of string excitations and its application to the early universe and 
black hole evaporation. (6) The number of dimensions used can then, of 
course, be greater than four, possibly 10 or 26. However, insofar as ther- 
modynamics applies, it must be true that a superadditive entropy is con- 
sistent with a negative heat capacity if and only if the entropy is 
nonextensive. (2) Therefore, the topic discussed here is of current interest in 
string and superstring theory. 
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2. C A N O N I C A L / G R A N D  C A N O N I C A L  A P P R O A C H E S  

Consider a system of identical particles described in both the grand 
canonical ensemble (gce) and the canonical ensemble (ce). If V and T are 
its volume and absolute temperature, the Helmholtz free energies satisfy 

Fgoe(#, V, T ) = # N - p V = # N - k T l n 2 ( # ,  V, T) 

F~e(N, V, T)=  - k T l n  Z(N, V, T) 

Assume that N(#, V, T) in the grand canonical ensemble is the same as N 
in the canonical ensemble. Thus 

V l[Fgoe(#, V, T)-F~e(N, V, T)] 

kT #N 
= T [In Z(N, V, T) - in E(#, V, T)] + ~ (2.1) 

The limit #--* 0 may be taken provided it is recognized that V, T must be 
fixed while N(#, V, T)=  N changes appropriately. The last term in (2.1) 
now vanishes provided .g(0, V, T) is finite. Next take the thermodynamic 
limit in (2.1). If the system is extensive, the two ensembles then give the 
same results (7) and so the left-hand side of (2.1) also vanishes. This gives 

V l ln Z(N, V, T)~ V- ~ In ~,(0, V, T) (2,2) 

for extensive systems, where ~ denotes equality in the thermodynamic 
limit. If the limits are taken in reverse order, the same result is found 
provided N/V is finite in the thermodynamic limiL The result (2.2) will 
hold also if a whole spectrum of identical particles is present, as will be 
assumed below. This new (or little known) result will be used here for 
calculating results in the grand canonical ensemble. 

Thus, in the canonical ensemble (e.g., Ref. 4), but also in the grand 
canonical ensemble (not considered in Ref. 4), the standard result 

T f,~ m 2 ( g T ~ l / 2  e nrn/T 
V-11nZ~o~-~2 p(rn) ~ n2 \2nm] dm 

0 n = l  

- ~  n5/2 exp m - dm (2.3) 
0 n = l  

may be used. The units are such that h = c = k =  I, the spectrum (1.1) is 
assumed with b = l/To, and m o is the smallest rest mass considered. Carry- 
ing out the integration, we obtain 

K T 3 / 2  ~" 1 ( T  1 ~  " s/2 ~ v--llnZ-~(27~)3/~n~l~-7~ --~0/] f xa+3/28~ ..... dx (2.4) 
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where Xno- mo(n/T- 1/To). For  large but  finite values, In Z oc V, so that  
the pressure is 

P=TOlnZ/OV~P~TV l l n Z  (2.5) 

The wel l -known result (e.g., Ref. 1), 

T ~ T O for all values of a 

provided xno > 0 for all n (2.6) 

implying that  T o is a limiting tempera ture ,  is obta ined  by considering the 
n = 1 term in (2.3), which converges only if (2.6) holds. The limit T =  To 
can be reached only if ~mCC 0 m a+3/2 dm converges; that  is. 

T =  T o is possible only i f a  < - 5 / 2  (2.7) 

It is seen that  V ~ In Z and hence its derivatives P and the energy per 
unit volume E/V are all intensive. In that  sense, then, E and S are extensive 
quantit ies in this model.  

No te  explicitly 

E 3T KT3/2 ~, 1 (n_T__Too]l~-~-v/2I~ 
-V ~ 2-V In Z -b (2~z) 3/-----5 ,, = 1 n--~ x,,0 xa+5/ge-xdx (2.8) 

In the ne ighborhood  of T ~  T o this is 

V (')~-3/2 Z H5/2 (HT~-~-TT+7/2 (vIT O-  T) XV+3/2g-Vdx 
. - -  1~, ) H = 1 -'r 

(2.9) 

Observe  that  

results (2.8), (2.9) hold for all values of a provided X=o > 0 (2.10a) 

if x o = 0, it is required that  a < -5/2 in order  
that  V -1 in Z be finite (2.10b) 

Also note that,  in the expression for El V, the n = 1 term will domina te  and, 
for values of T approach ing  To, it is seen f rom (2.9) that  this will be given 
approx imate ly  by 

K T~o a +17/2 f c~o 
. . . .  xa+5/2e-~ dx (2.11) 

(27I) 3/2 ( T o - -  T) ~+7/2 Jq0 



92 Dunning-Davies and Landsberg 

If one of the two conditions (2.10) is fulfilled, the heat capacity at con- 
stant volume C v  and E are both proportional to V for large but finite 
volumes. Then, the mean square relative fluctuation in the internal energy 
is given by 

( E - / 2 )  2 kT2C~ 1 
- - - - O Q  

( / 2 ) 2  E 2 V 

and so vanishes in the thermodynamic limit. Thus, one obtains sensible 
results by this approach. 

3. M I C R O C A N O N I C A L  A P P R O A C H  

The phase space density for a system of particles described by a level 
density (1.1) is 

a = ~.. dm i Krn~/ d3pi ebm' (~ E i -- E 
n : l  i = l  0 i 1 

The energy of the ith particle may be written in terms of its kinetic energy 

Qi by 

E i = m i + O i  

so that 

~ I  Cbmi : c~ ~ I  C -bQ, 
i - 1  i = 1  

Also, for a nonrelativistic gas, p i ~ ( 2 m i Q i )  1/2, and so, in this case, 
following Ref. 4, the phase space density may be estimated by 

o-_~ L (2-;-~3/2 ] ~ dmim~/+3/z (3.1) 
n = 1 i : 1 70 

where the cutoff A i is introduced to take approximate account of energy 
conservation, following Refs. 3 and 4. Five special cases will be examined 
and corrected in the remainder of this section. 

Case (i) a > - 5 / 2 .  In this case, the mass integral in (3.1) is 
dominated by states with large mass and is seen to have the approximate 
value 

A ~ + 5/2/(a + 5/2) 
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The n-particle contribution to or, denoted by cr (n), may be evaluated subject 
to the constraint 

L Ai=E 
i = 1  

The maximum contribution to (r (n) is seen to be obtained when the Ai are 
all of order E/n and this provides the estimate 

cr(,,t _~ _ _  . (3.2) 
n! (2zcb)3/2 a + 5/2 

Following Ref. 3, ~r In) is seen to possess a maximum when 

E ~ + 5/2 ] l/(~ + v/2) KV e-" 5/2 
n=N~- ~ aT5-~J 

As noted in Ref. 4, for large E, N grows like E (a+ 5/z)/(a+ 7/2) and so the 
mean energy per particle and, hence, the average mass are large when the 
energy density is sufficiently large. This justifies the approximations used to 
obtain (3.2). Using the above results and estimating a-~ a (N) leads to the 
following expression for the entropy: 

( 7'[ KV e-~ 
S = l n o   -bE+ 

and this expression is seen to be extensive [-contrast Ref. 4, Eq. (3.23)]. 
Again, 

V-c~E~b+ a+ .(2z~b)3/2(a~/~-~E j 

or  

V (27c) 3/2 

for values of T approaching To. 
Apart from a slight difference in the coefficient, this latter expression is 

seen to agree with (2.11), which was obtained via the canonical/grand 
canonical approach, for the case a > -5 /2 .  

Case (ii). a = - 5 / 2 .  In this case, the mass integral in (3.1) is 
dominated once again by states with large mass and is seen to have the 
value 

ln(A]mo) 
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As in case (i), or/"/ will receive its main contribution for Ai~  E/n and this 
leads to the estimate 

ebL[ KV 
< , , t  ~ _ _  In (3.3) 

- n! ~ \nmo] j 

Using the approach of case (1), we find that this latter expression possesses 
a maximum when 

KV E 
n = N -  ~ In 

(2~b) 3/2 Nm o 

The sum over n of or/") may be accomplished approximately by replacing 
the n in the argument of the logarithm in (3.3) by N. Since Inn varies 
slowly compared with n!, this is an acceptable approximation. Hence, the 
entropy is given by 

KV E 
S = l n ~ = l n  ~r("t_~ b E + ~ l n - -  

and this expression is seen to be extensive [constrast Ref. 4, Eq. (3.32)]. 
Again, 

1 OS KV I 
- = - - ~ - b +  
T 0E (27cb) 3/2 E 

or 

E K T~o/2 
V -  (2g) 3/2 T o -  T 

for values of T approaching T o. 
This result is seen to agree with (2.11) for a =  -5/2.  

Case ( i i i ) .  - 7 / 2 < a <  5/2. As pointed out in Ref. 4, the case 
when a < -5 /2  is somewhat different from those considered previously. In 
this case, the mass integral in (3.1) has the value 

m~ + s/2 _ A~ + 5/'2 

- -  a - -  5/2 

and so receives its main contribution from the low-mass region. Hence, 
important contributions may be made to a(n) by configurations in which 
n - 1  particles have small masses (with a mean mass fit) and one particle 
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has a mass fixed by energy conservation to be of order E -  (n - 1 ) th. These 
configurations will be dominant when E becomes sufficiently large, 

E >> nrh(E) (3.4) 

The mean mass in the mass integral in (3.1) is given by 

f Ai t A 
rh(Ai) = ma+S/2dm/( 'm"+3/2dm 

..7~ /J,oo 

from which it follows that 

rh(A,)~_ [ ( -a -5 /2 ) / (a+7 /2 ) ]  A'/+7/2/m'~+5/2 for - 5 / 2 > a >  - 7 / 2  

rn(A,) ~- m o ln(A]mo) for a = - 7 / 2  

r~(A~)~_[(a+5/2)/(a+7/2)]mo for a <  - 7 / 2  (3.5) 

If condition (3.4) is not met, energy conservation may be imposed in 
the approximate form 

rh(Ai) = E/n 

Then, in the case when 5 / 2 > a >  7/2, Ai is seen to be given by 

Ai=\-a-5/2( a+7~2 m"+5/2~) (3.6) 

and it follows that 

KVma+SJ2 
a (n~ ~- [ 1 - (Ai/mo) a + 5/2] (3.7) 

n! t (2~zb~75 ( ----~ --- 5/2) 

with A i given by (3.6). 
Using the approach adopted for the previous cases considered, we see 

that this expression for a ~'~ is maximal for 

KV m 3 + 5/2 
n = N -~ (2~b)3/~ ( _ a  - 5/2) (3.8) 

Estimating cr _~ o - ( u J  leads to the following expression for the entropy: 

KV m o 1 - (3.9) 
S = l n c r ~ - b E + N + N l n  (2~3/2 N ( _ a _ 5 / 2 )  \too~ 

where Ai is given by (3.6) with n = N. 

822/46/1-2-7 
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This expression for the entropy is seen to be extensive (contrast 
Ref. 4). Again, 

1 ~3S I KV 1 ]1/~.+ 7/z) 
T-~?E ~ b +  (2rc-~2 E(a_~7/2) j  

o r  

E K 1 T~0=+ I7/2 
- - m  

V (27z) 3/2 a + 7 / 2  ( T  o - T) a+7/2 

for values of T approaching To. 
Apart from small differences in the numerical coefficients, which are 

understandable considering the approximations being made, this result is 
seen to agree with expression (2.11) when - 5 / 2  > a > -7/2 .  

Case (iv). a = - 7 / 2 .  Assume that condition (3.4) is still not 
satisfied. In this case, A i is given by 

A,. ~- mo eEl=m~ (3.10) 

and a I't is given by (3.7) once again, but with Ai as in (3.10). This 
expression for a I') is seen to be maximal for n = N as given by (3.8) once 
more. Estimating a ~-o IN) leads to (3.9) as the expression for the entropy, 
but with Ai as in (3.10) with n = N. This expression for the entropy is seen 
to be extensive (contrast Ref. 4). Again, 

1 c3S e - -  E/Nrno 

T c?E b -~ mo 

o r  

E 
V -  (2re) 3/2 T3/2 In mo(To_ T) 

for values of T approaching To. 
This result is seen to agree with expression (2.11) for the case when 

a = -7/2.  
Hence, it has been shown that, for a >~ -7 /2 ,  the microcanonical and 

canonical/grand canonical descriptions are equivalent, as expected. Unfor- 
tunately, due to the form of the approximate expression (3.5) for th(Ai) in 
the case when a < - 7 / 2 ,  the present microcanonical approach proves 
unsuitable for an investigation of the model under discussion in that case. 



Nonextensivity in Hadron Thermodynamics 97 

Case (v). a <  - 5 / 2  with (3.4) holding. However, one further case 
was considered in Ref. 4 and should be mentioned here for com- 
pleteness- this  is the case where a < -5 /2 ,  but condition (3.4) holds. As 
mentioned earlier, the main contributions to a(n) in this case were felt to 
come from configurations in which n -  1 particles have small masses with 
mean mass rh(E) and one particle has a mass fixed by energy conservation 
to be of order E - ( n - 1 )  n~(E). From (3.1) the contribution of such con- 
figurations is seen to be estimated by 

ebe [ KVm~ + ,/2 i n -1  + ,/2 E~ + 5/2 ) 
a(n) - (n~- l ) !  (2rob) 3/2 ( - a  - 5/2) (2•b) 3/2KV (m;( - a--  5/2) (3.11) 

where the factor 1/(n - 1 )! = n/n[ arises since the high-mass particle may be 
associated with any of the n mass integrals and the mass of the heavy par- 
ticle has been approximated by E, using (3.4). 

As before, the most probable number of particles N is found by 
maximizing ~(,,/ with respect to n, and once again the result is given by 
(3.8). Then, the sum of (3.11) over n may be performed to give 

~ ehe KV(m;+ S/2_ E~+ 5/2) KVm~ + 5/2 
cr = a t''/ (2Tcb) 3/2 ( - - a  -- 5/2) exp (2/rb)3/2 ( - a  - 5/2) 

/ 7 =  [ 

from which it follows that the entropy is given by 

S = l n c r ~ - b E +  KVrn~+5/2 f-ln KV(rn~+5/2-E~+5/2) 
(2~b) 3/2 ( - a  - 5/2) (2~b) 3/2 ( - a -  5/2) 

It is immediately apparent that this entropy expression is not exten- 
sive. Also, it is seen to be a concave function, since 632S/63E 2 and ~32S/0V2 
are both negative, but ~2S/OVc?E is zero. Therefore, since it has been 
shown (2~ that concavity and superadditivity together imply extensivity, it 
follows that the above entropy expression is not superadditive, and hence is 
unphysical. 

4. C O N C L U S I O N S  

The statistical thermodynamics of a hadron gas have been discussed 
first via the canonical/grand canonical approach. The system was found to 
possess an extensive entropy function and the mean square relative fluc- 
tuation in internal energy was found to tend to zero in the thermodynamic 
limit. Both these results lead to an expectation that an extensive ther- 
modynamics also will result from the microcanonical approach. This has 
been confirmed by detailed calculation for a ~> -7/2 .  
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However,  in the fifth case considered in Section 3, a was assumed less 
than - 5 / 2 ,  but condit ion (3.4) held and one particle was assumed 
appreciably heavier than the rest. In  this special case, an unphysical 
entropy was found to result once again even after the small correction to 
the procedure of Ref. 4 was made. It should be noted that, in Ref. 3, the 
model considered for this case is similar to that considered in Ref. 4 and 
here, except that  overall m o m e n t u m  conservat ion is imposed. The resulting 
entropy in this case, while still nonextensive, is superadditive. Hence, the 
model in Ref. 3 is acceptable physically and, incidentally, is seen to possess 
a negative heat capacity. This is consistent with the theorem I2t that  a 
negative heat capacity implies a nonextensive entropy, provided superad- 
ditivity is satisfied. 
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